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Abstract – Two problems of the impact interaction of
two spherical shells, one of which is rigid while the sec-
ond one is viscoelastic, are considered. In the first problem
the viscoelastic shell impacts with the velocity V0 against
the quiescent rigid shell, while in the second problem, on
the contrary, the rigid shell with the velocity V0 bumps the
motionless viscoelastic shell. For both problems, integrod-
ifferential equations for the values of local bearing of the
material of the viscoelastic shell have been obtained under
the assumption that the volume relaxation in viscoelastic
shells is negligible. Approximate solutions of the integrod-
ifferential equations allows one to carry out the compara-
tive analysis of the results obtained in the both cases.

Keywords – Fractional derivative standard linear solid
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I. INTRODUCTION

The problems connected with the analysis of the shock
interaction of thin bodies (rods, beams, plates, and shells)
with other bodies have widespread application in various
fields of science and technology. The physical phenomena
involved in the impact event include structural responses,
contact effects and wave propagation. Because these prob-
lems belong to the problems of dynamic contact interac-
tion, their solution is connected with severe mathematical
and calculation difficulties. To overcome this impediment,
a rich variety of approaches and methods have been sug-
gested, and the overview of current results in the field can
be found in recent state-of-the-art articles by Abrate [1],
Rossikhin and Shitikova [2], and Qatu et al. [3].

In many engineering applications, it is important to un-
derstand the transient behaviour of thin-walled shell struc-
tures subjected to central impact not only by a small pro-
jectile but by another shell as well.

∗Some of the results had been presented at the 2016 International Con-
ference on Mathematical Models in Engineering Science (MMES’16),
Dubrovnik, Croatia, 28-30 September 2016. This research was supported
by the Ministry of Education and Science of the Russian Federation

Nowadays fractional calculus is really widely used in
different fields of science and technology, including various
dynamic problems of mechanics of solids and structures
[4], and the problems of impact interaction among them
[5].

The only paper considering the analysis of two col-
liding fractionally damped spherical shells in modelling
blunt human head impacts has been recently appeared [6],
wherein the contact force is represented using linear ap-
proach via fractional derivative standard linear solid model.
It was assumed that during impact process the microstruc-
ture of the shells’ materials changed only in the contact do-
main, i.e., both shells remain elastic except the parts in-
volved into the contact interaction which exhibit locally
viscoelastic properties.

Further Rossikhin et al. [7] investigated the collision
of two viscoelastic shells, viscoelastic features of which
are described by the standard linear solid model with con-
ventional integer derivatives. During the impact process
there occurs decrosslinking within the domain of the con-
tact of the colliding bodies, resulting in more freely dis-
placements of molecules with respect to each other, and
finally in the decrease of the shells’ material viscosity in
the contact zone. This circumstance allows one to describe
the behaviour of the materials of the colliding spherical
shells within the contact domain by the standard linear solid
model involving fractional derivatives, since variation in
the fractional parameter (the order of the fractional deriva-
tive) enables one to control the viscosity of the shells’ ma-
terial. That is why the fractional parameter could be con-
sidered as the structural parameter.

The particular case of the impact interaction of a vis-
coelastic spherical shell with an infinite rigid plate was
studied in [8].

In the present paper, we will consider two problems
of the impact interaction of two spherical shells, when the
nonrelaxed elastic modulus of one shell is much larger than
those of the second shell, what allows one to consider one
shell as a rigid and another one as viscoelastic. In the first
problem the viscoelastic shell impacts with the velocity V0
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Figure 1: Scheme of the normal impact of a spherical vis-
coelastic shell against a rigid spherical shell

against the quiescent rigid shell, while in the second prob-
lem, on the contrary, the rigid shell with the velocity V0

bumps the motionless viscoelastic shell. For both prob-
lems, integrodifferential equations for the values of local
bearing of the material of the viscoelastic shell have been
obtained under the assumption that the volume relaxation
in viscoelastic shells is negligible.

II. IMPACT INTERACTION OF A VISCOELASTIC

SPHERICAL SHELL AGAINST A QUIESCENT RIGID

SPHERICAL SHELL

Let us consider the problem on a normal impact of
a viscoelastic spherical shell with the initial velocity V0

against a rigid spherical shell resting on a rigid plate
(Fig. 1), when the viscoelastic features of the impactor are
described by the standard linear solid model with conven-
tional derivatives of integer order.

For this purpose we will proceed from equations of
motion of two colliding viscoelastic spherical shells de-
rived recently in [7], wherein we tend the Young’s modulus
of the second shell to infinity. As a result we obtain the
following equation of motion of the contact domain

ρπa2hv̇z = 2πahσrz|r=a + Fcont (1)

under the action of the transverse force 2πahσ̃rz|r=a and
the contact force Fcont, which is defined via the generalized
Hertzian contact law

Fcont = k̃α3/2, (2)

where α is the local bearing of the impactor’s material
(Fig. 2), k̃ is the operator involving the geometry of col-
liding bodies, i.e. the radii of the viscoelastic R1 and rigid
R2 spherical shells, respectively, and viscoelastic features

Figure 2: Scheme of velocities and stresses in the shell’s
element on the boundary of the contact domain [7]

of the impactor defined by the time-dependent functions Ẽ
and ν̃

k̃ =
4
3

√
R′Ẽ

1− ν̃2
, (3)

1
R′

=
1
R1

+
1
R2

, (4)

ρ and h are the density and thickness of the viscoelastic
shell, respectively, a is the radius of the contact domain
(Fig. 1), and an overdot denotes the time-derivative.

The following equation

V0 − vz|r=a = α̇ (5)

should be added to equations (1) and (2).
In [7] it has been shown that considering vr|r=a = ȧ,

the value σrz|r=a could be calculated in the following form
according to the dynamic condition of compatibility:

σrz|r=a = ρ (G1 −G2)
(a2).

2R1

−ρ
(
G1

a2

R2
1

+G2

)
vz|r=a, (6)

where G1 and G2 are the velocities of the quasi-
longitudinal and quasi-transverse waves (surfaces of strong
discontinuity), respectively, which are generated at the mo-
ment of impact at the point of tangency (or the point of con-
tact) of the impactor with the target, which then propagate
in the form of diverging circles along spherical surface, and
are defined as

G1 =

√
E∞

ρ(1− ν2
∞)

, (7)

G2 =
√
µ∞
ρ
, (8)

where E∞, µ∞ and ν∞ are non-relaxed elastic and shear
moduli and Poisson’s ratios, respectively.
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Considering that a/R1 � 1, equation (6) is reduced to

σrz|r=a = −ρG2vz|r=a, (9)

Now substituting (2) and (9) in (1) and considering that
a2 = R1α [9] yield

ρπR1αhv̇z|r=a = −2π(R1α)1/2hρG2vz|r=a + k̃α3/2.
(10)

In order to solve equation (10), we should define the
operator k̃, resulting in decoding the operator Ẽ/(1− ν̃2).

For the majority of viscoelastic materials, the bulk
modulus K remains constant during the process of me-
chanical loading of this material [10], resulting in [5]

Ẽ1

1− 2ν̃
=

E∞
1− 2ν∞

. (11)

Recently it has been proposed in [7] that during the
impact process there could occur decrosslinking within the
domain of the contact between the impactor and target, re-
sulting in more freely displacements of molecules with re-
spect to each other, and finally in the decrease of the shell’s
material viscosity in the contact zone. This circumstance
allows one to describe the behaviour of the material of the
impacting spherical shell within the contact domain by the
standard linear solid model involving fractional derivatives

σ + τγε D
γσ = E0 (ε+ τγσD

γε) , (12)

where σ is the stress, ε is the strain, E0 is the relaxed mod-
ulus, τε and τσ are the relaxation and creep times, respec-
tively,

Dγx(t) =
d

dt

∫ t

0

(t− t′)−γ

Γ(1− γ)
x(t′)dt′ (13)

is the Riemann-Liouville fractional derivative, Γ(1 − γ) is
the Gamma-function, γ (0 < γ ≤ 1) is the fractional pa-
rameter, and x(t) is a certain function.

Utilizing the model (12), it could be found [5] that

Ẽ

1− ν̃2
=

E∞
1− ν2

∞

[
1−m1 3∗γ (tγ1)−m2 3∗γ (tγ2)

]
,

(14)
where 3∗γ (tγi ) (i = 1, 2) is the dimensionless Rabotnov
operator [5]

3∗γ (tγi ) =
1

1 + tγiD
γ
, (15)

and

tγ1 =
2(1 + ν∞)τγε

2(1 + ν∞) + νε(1− 2ν∞)
,

tγ2 =
2(1− ν∞)τγε

2(1− ν∞)− νε(1− 2ν∞)
,

m1 =
3
2

(1− ν∞)νε
2(1 + ν∞) + (1− 2ν∞)νε

,

Figure 3: Scheme of the normal impact of a viscoelastic
spherical shell against an infinite rigid plate [8]

m2 =
1
2

(1 + ν∞)νε
2(1− ν∞)− (1− 2ν∞)νε

,

νε =
E∞ − E0

E∞
.

Equation (10) with due account for (5) and (14), as
well as the initial conditions

α|t=0 = 0, α̇|t=0 = V0, (16)

is reduced to

α̈+ æ
[
α1/2(t)−∆γα

−1

∫ t

0

(t− t′)γ−1

×α3/2(t′)dt′
]

= 0, (17)

where

æ =
4
√
R′E∞

3πR1ρh(1− ν2
∞)

, (18)

∆γ =
1

Γ(γ)

2∑
j=1

mj

tγj
. (19)

Note that a particular case of the normal impact of a
viscoelastic spherical shell against an infinite rigid plate
(Fig. 3) was considered recently in [8]. In this case, R2 →
∞ in (4), and therefore R′ = R1.

Thus, Eq. (3) is reduced to

k̃ =
4
3

√
RẼ

1− ν̃2
, (20)

where R is the radius of the impactor, i.e. the radius of the
viscoelastic shell.

Then the solution presented above is valid for this case
as well if R1 is substituted by R in Eqs. (6) and (10), re-
sulting in the governing Eq. (17), where the coefficient æ
takes the form

æ =
4E∞

3π
√
Rρh(1− ν2

∞)
. (21)

INTERNATIONAL JOURNAL OF MECHANICS Volume 11, 2017

ISSN: 1998-4448 8



Figure 4: Scheme of the normal impact of a rigid spherical
shell against a motionless viscoelastic spherical shell

III. IMPACT INTERACTION OF A RIGID SPHERICAL

SHELL AGAINST A QUIESCENT VISCOELASTIC

SPHERICAL SHELL

Now we consider the second problem when a rigid
spherical shell bumps a viscoelastic spherical shell resting
on a rigid plate (Fig. 4). In this case, the equation of motion
of the rigid sphere

mz̈ = −k̃α3/2 (22)

should be added to Eq. (10), where m is the mass of the
rigid sphere, and

ż = vz|r=a + α̇. (23)

From Eqs. (22) and (23) we find

mv̇z|r=a = −mα̈− k̃α3/2. (24)

Adding Eqs. (10) and (24), we have

(ρπR1hα+m) v̇z|r=a = −mα̈
−2π(R1α)1/2hρG2vz|r=a. (25)

To find the solution at the first approximation, it is pos-
sible to ignore the second term in the right hand part of
Eq. (25), as we similarly have done above in the first prob-
lem. As a result we obtain

v̇z|r=a = − m

m+ ρπR1hα
α̈. (26)

Substituting (26) in Eq. (24) yields

m

(
1− m

m+ ρπR1hα

)
α̈ = −k̃α3/2. (27)

Considering the smallness of the value α, from (27) we
have

ρπR1hαα̈+ k̃α3/2 = 0. (28)

If we introduce the coefficient æ defined in (18) in
Eq. (28) and consider the expression for the contact force,
then we are led to Eq. (17).

Thus, the both problems, which are initially described
by different sets of integrodifferential equations, have sim-
ilar solutions. This fact indicates that these problems are
reciprocal.

IV. APPROXIMATE SOLUTIONS

If we consider
α ≈ V0t (29)

as a first approximation, then Eq. (17) with due account for∫ t

0

(t− t′)γ−1
t′

3/2
dt′ =

3
γ

(
1
3
− 1

5
γ

)
t3/2+γ (30)

takes the form

α̈ = −æV 1/2
0

[
t1/2 −∆γ

3
γ

(
1
3
− 1

5
γ

)
t1/2+γ

]
. (31)

Integrating (31) yields

α̇ = V0 −
2
3

æV 1/2
0 t3/2

+ æV 1/2
0 ∆γ

3
γ

(
1
3
− 1

5
γ

)
t3/2+γ

3/2 + γ
, (32)

and

α = V0t−
4
15

æV 1/2
0 t5/2

+ æV 1/2
0 ∆γ

3
γ

(
1
3
− 1

5
γ

)
t5/2+γ

(3/2+γ)(5/2+γ)
(33)

A. The Case γ = 0

In a particular case, when γ = 0, and therefore

2∑
j=1

mj = 0,

relationships (32) and (33) take the form

α̇ = V0

(
1− 2

3
æV −1/2

0 t3/2
)
, (34)

α = V0t

(
1− 4

15
æV −1/2

0 t3/2
)
, (35)

from which the contact duration t
(0)
cont and the time t(0)max

at which the maximal local indentation α(0)
max takes place

could be found

t
(0)
cont ≈

(
15
4
V

1/2
0

æ

)2/3

, (36)
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t(0)max ≈

(
3
2
V

1/2
0

æ

)2/3

, (37)

α(0)
max ≈

3
5
V0t

0
max. (38)

The Case γ 6= 0 or 1

When the fractional parameter takes on the magnitudes
within the interval 0 < γ < 1, then the duration of contact
t
(γ)
cont could be determined as follows

t
(γ)
cont ≈ t

(0)
cont + ε, (39)

where ε is a small value.
Substituting (39) in Eq. (33) and tending α → 0, we

obtain

V0

(
t
(0)
cont + ε

)
− 4

15
æV 1/2

0

(
t
(0)
cont + ε

)5/2

+æV 1/2
0 ∆γ

3
γ

(
1
3
− 1

5
γ

) (t(0)cont + ε
)5/2+γ

(3/2+γ)(5/2+γ)
= 0, (40)

whence it follows that

ε =
5
2

∆γ
3
γ

(
1
3
− 1

5
γ

) (
t
(0)
cont

)1+γ

(3/2 + γ)(5/2 + γ)
.

Supposing that

t(γ)max ≈ t(0)max + ε1, (41)

where ε1 is a small value, and substituting (41) in Eq. (32)
with α̇ = 0

V0 −
2
3

æV 1/2
0

(
t(0)max + ε1

)3/2

+ æV 1/2
0 ∆γ

3
γ

(
1
3
− 1

5
γ

) (t(0)max + ε1

)3/2+γ

3/2 + γ
, (42)

we obtain

ε1 = ∆γ
3
γ

(
1
3
− 1

5
γ

) (t(0)max

)1+γ

(3/2 + γ)
.

Now substituting (41) in (33) we could define

α(γ)
max = α(0)

max +
9
2
V0∆γ

1
γ

(
1
3
− 1

5
γ

)

×

(
t
(0)
max

)1+γ

(3/2 + γ)(5/2 + γ)
. (43)

C. The Case γ = 1

In the particular case γ = 1, the characteristic values
take the form

t
(1)
cont = t

(0)
cont +

4
35

∆1

(
t
(0)
cont

)2

, (44)

t(1)max = t(0)max +
4
25

∆1

(
t(0)max

)2

, (45)

α(1)
max = α(0)

max +
12
175

∆1

(
t(0)max

)2

, (46)

where ∆1 = ∆γ |γ=1.

VII. CONCLUSION

Two problems of the impact interaction of two spher-
ical shells, one of which is rigid while the second one is
viscoelastic, have been considered. In the first problem the
viscoelastic shell impacts with the velocity V0 against the
quiescent rigid shell, while in the second problem, on the
contrary, the rigid shell with the velocity V0 bumps the mo-
tionless viscoelastic shell.

The damping features of the viscoelastic body are de-
scribed by the standard linear solid model with conven-
tional derivatives of integer order. During the impact pro-
cess there could occur decrosslinking within the domain
of the contact between the impactor and target, resulting
in more freely displacements of molecules with respect to
each other, and finally in the decrease of the shell’s ma-
terial viscosity in the contact zone. This circumstance al-
lows one to describe the behaviour of the material of the
viscoelastic spherical shell within the contact domain by
the standard linear solid model involving fractional deriva-
tives. The fractional parameter as an additional parameter
could control the changes in the shell’s viscosity within the
impact domain.

For both problems, integrodifferential equations for the
values of local bearing of the material of the viscoelastic
shell have been obtained under the assumption that the vol-
ume relaxation in viscoelastic shells is negligible. It has
been shown that the problems under consideration are re-
ciprocal ones.

The approximate analysis carried out on the base of
the suggested model allows us to make the following con-
clusion: maximal viscosity increases all values character-
izing the process of shells interaction, tcont, tmax, and
αmax, since with the increase in the fractional parameter
from zero to unit the viscosity enhances, resulting in the
increment of the characteristic values from t

(0)
cont, t

(0)
max, and

α
(0)
max to t(1)cont, t

(1)
max, and α(1)

max, respectively.
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